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Abstract
As a generalized extension of Pawlak’s rough set model, the multigranulation decision-theoretic rough set model in ordered
information systems utilizes the basic set assignment function to construct probability measure spaces through dominance
relations. It is an effective tool to deal with uncertain problems and widely used in practical decision problems. However,
when the scale of dataset is large, it takes a lot of time to characterize the approximations of the target concept, as well as
complicated calculation processes. In this paper, we develop a novel model called local multigranulation decision-theoretic
rough set in an ordered information system to overcome the above-mentioned limitation. Firstly, to reduce the computing time
of the information granule independent of the target concept, we only use the characterization of the elements in the target
concept to approximate this target concept. Moreover, the corresponding local multigranulation decision-theoretic rough
set in an ordered information system is addressed according to the established local model, and the comparisons are made
between the proposed local algorithm and the algorithm of original multigranulation decision-theoretic rough set in ordered
information systems. Finally, the validity of the local approximation operators is verified through the experimental evaluation
using six datasets coming from the University of California-Irvine (UCI) repository.

Keywords Multigranulation decision-theoric rough set · Probabilistic rough set · Local rough set · Ordered information
systems

1 Introduction

Rough set theory (RST) (Pawlak 1982), pioneered by the
Polish scientist Pawlak Z. in 1982, is a valid paradigm in
mathematics to tackle the imprecise, uncertain and tremen-
dous information in intelligent systems (Pawlak 1992). It
analyzes the data and extracts hidden knowledge from it,
revealing its potential rules. It is also an objective and effec-
tive method of data mining. Rough set theory is based on
the classification mechanism. It links knowledge to classifi-
cation and considers knowledge to be the ability to classify
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objects. The main idea is to approximate inaccurate or uncer-
tain knowledge by using knowledge known in the knowledge
base. The most striking difference between this theory and
other theories dealing with uncertain and imprecise prob-
lems is that it does not need to provide any preliminary or
additional information beyond the dataset, so it can be said
that the description or treatment of the uncertainty of the
problem can be said to be relatively objective. Ever since the
inception of RST, it has been successfully applied in many
categories such as machine learning, data mining, knowl-
edge discovery in databases, pattern recognition, granular
computing and expert systems (Jeon et al. 2016; Duntsh and
Gediga 1998; Hu and Cercone 1995; Li et al. 2018; Qian
et al. 2014; Pedrycz 2013). However, the original rough set
theory is not able to find and deal with inconsistencies from
consideration of criteria, that is, attributes with preference-
ordered domains, such as test score, product quality, market
share and debt ratio. In order to solve this problem, Greco
and others put forward that the rough set method is used to
sort the attributes under the dominance relation, that is, the
extension of the classical rough set theory. It is referred as
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the dominance-based rough set approach (DRSA) (Du and
Hu 2017; Greco et al. 2002). Moreover, the DRSA takes into
consideration monotonic relationships between descriptions
of objects on condition criteria and their class labels (Du and
Hu 2016; Li and Li 2015; Shao and Zhang 2005; Susmaga
2014; Zhang et al. 2013). Since its inception, DRSA has been
extended to copewith knowledge acquisition in various types
of ordered information systems.

After more than 30 years of development, the rough set
theory has been applied to many fields and have achieved
remarkable results (Xu and Yu 2017; Li et al. 2018; Yu and
Xu 2017; Xu and Li 2016; Xu 2013). Pawlak and Wong
Pawlak et al. (1988) proposed a probabilistic rough set of
conditional probability based on the precision of 0.5. Ziarko
discusses the variable precision rough sets based on the error
classification rate (Ziarko 1993). Then, Yao introduces rough
membership function based on conditional probability into
rough set and gives a unified framework for probabilistic
rough sets (Yao and Wong 1992; Yao 2008) and discusses
generalized probabilistic rough set model (Yao 1998). On
the basis of the decision theory rough set model, Ma and
Sun (2012) give a probabilistic rough model under the gen-
eralized relation in the dual universes. Based on the rough
set and two classification problem, Yao proposed three-way
decisions theory (Yao 2009, 2007) and gave three domains
of classification: the acceptance domain, the rejection region
and the disclaimer region (delay decision). Three-way deci-
sions have more one option than the two-way decisions,
which is that delay decision. The idea of three-way decisions
was proposed based on rough sets and probabilistic rough
sets. Greco et al. (2007) discussed a Bayesian decision the-
ory for dominance-based rough set model in 2007. Yao and
Zhou (2010) in 2010 put forward Naive Bayesian decision
theory rough setmodel. Li andXu (2015) studied threemulti-
granulation decision-theoretic rough set models in ordered
information systems. They constructed probability measure
spaces based on dominance relations by the basic set assign-
ment function (Xu et al. 2010). Yu et al. (2018) combined
absolute and relative quantization to construct a double quan-
tization decision theory rough set model in multigranulation
approximation space. Qian et al. proposed a generalized
multigranular sequential three-way decision model based on
multiple different thresholds, which overcomes the situation
that the traditional model cannot adapt to multiview gran-
ular structure with multiple thresholds (Qian et al. 2019).
Recently, the three-way decision based on rough sets has
been widely studied and extended and has been applied in
many fields, such as investment decision (Liu et al. 2011),
government decision (Liu et al. 2012), text classification
(Li et al. 2010), cluster analysis (Yu et al. 2014) informa-
tion recognition (Li et al. 2016) and other aspects (Fang
and Min 2019; Zhang and Miao 2017; Chen et al. 2016;
Liang et al. 2015, 2016; Sun et al. 2016). Not only in the

field of rough sets, but also in recent years, many academic
studies have been well developed. For solving NP-complete
problems with multiple objectives, Bansal et al. proposed a
nature-inspired-based multiobjective optimization algorithm
to find the Optimal Golomb rulers in a reasonable time frame
(Bansal and Sharma 2018; Bansal 2018). Moreover, Bansal
also presented an approach to find near-optimalGolomb ruler
sequences based on nature-inspired algorithms (Bansal et al.
2017a, b).

From the point of view of granular computing, the existing
approximation concepts of the decision-theoretic rough set
model are induced by a single relation on the universe, such
as equivalence relations, tolerance relations and dominance
relations. However, due to various needs of different people,
the concept of approximation is described by using multi-
ple binary relationships. Based on the above, Qian combined
the Bayesian decision theory with multigranulation rough
set (Qian and Liang 2006) and put forward multigranula-
tion decision-theoretic rough set (Qian et al. 2014). In the
original method, all objects need to be calculated to obtain
knowledge granules, which is computationally intensive and
time-consuming. Thus, Qian et al. put forward a local rough
set based on inclusion degree, which only needs to com-
pute the information granules of the target set to obtain the
approximation of the target set. It can effectively reduce the
interference of invalid information and reduce the time loss
caused by calculating all objects. Furthermore, Qian et al.
(2017) made full use of the three-way decisions idea and
the granular computing idea, and further proposed a local
decision-theoretic rough set model based on multigranu-
lation, which provided a fast and convenient method for
decision analysis. However, the above research contents are
all based on equivalence relations, which are too strict and
have great limitations. Therefore, this paper chooses domi-
nance relation instead of indiscernibility relation to build the
local rough set model of ordered information systems. Next,
the decision making problem is considered using the theory
of three-way decisions from a quantitative perspective. Com-
bined with the probability rough set, we would establish a
local multigranulation decision-theoretic rough set based on
dominance relation. Compared with global (original) multi-
granulation decision-theoretic rough set model, both need to
calculate all dominance classes. But after constructing the
approximation space, the local model only need categorize
the elements in the target set without considering the classi-
fication of all objects. Hence, the local model is far less than
the time loss of the global model in terms of time consump-
tion.

The rest of this article is arranged as follows. In order
to facilitate discussion, Sect. 2 briefly reviews decision-
theoretic rough sets (DTRS) and multigranulation rough sets
in ordered information systems. In Sect. 3, the probabil-
ity approximation space is constructed by using the basic
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set assignment function, and the local rough set based on
dominance relation is established. Furthermore, a fast and
time-saving approach to approximate concept of target set is
proposed, which is local multigranulation decision-theoretic
rough set model. At the same time, two algorithm models
are established in Sect. 4, which are the global multigran-
ulation decision-theoretic rough set model and the local
multigranulation decision-theoretic rough set model. In the
above two models, experimental analysis is carried out to
compare the time loss of the concept approximation under
different datasets. Finally, Sect. 5 summarizes the work of
this paper and puts forward some suggestions for further
study.

2 Preliminary

In this section, we will first review some basic concepts
and notions in the theory of Pawlak rough set, probabilistic
approaches to rough set theory, the decision-theoretic rough
set based on Bayesian decision theory and the multigranula-
tion rough set in an ordered information system.

2.1 The rough set in ordered information systems

Definition 2.1 An information system is a triple I =
(U , AT , F), where

• U = {x1, x2, . . . , xn} is a nonempty finite universe.
• AT = {a1, a2, . . . , am} is a finite nonempty set of

attributes.
• F = { f j | j ≤ m} is a set of relationship between U and

AT , in which f j : U → Vj ( j ≤ m) is a total function
such that f j (x) ∈ Vj for each a j ∈ AT , x ∈ U .

In an information system, an attribute is a criterion if the
domain of an attribute is partial ordered by a decreasing or
increasing preference. An information system is an ordered
information system if all attributes are criteria and we denote
it as I≥ = (U , AT , F). Each nonempty subset B ⊆ AT
determines a preordered relation, which is defined as R≥

B =
{(x, y) ∈ U ×U | fa(y) ≥ fa(x),∀a ∈ B}.

According to the relation R≥
B , the universe U is divided

into some dominant classes given by U/B≥ = {[x]≥B , x ∈
U }, where [x]≥B = {y ∈ U |(x, y) ∈ [x]≥B }.

For an arbitrary subset X of U , B ⊆ AT , the lower
and upper approximations of X in the ordered information
systemI≥ are, respectively, defined as follows (Greco et al.
2002).

R≥
B (X) = {x ∈ U |[x]≥RB

⊆ X}
R≥
B (X) = {x ∈ U |[x]≥RB

∩ X 	= ∅}

If R≥
B (X) 	= R≥

B (X), then we call X as a rough set in this

ordered information system. And pos(X) = R≥
B (X), neg(X)

=∼ R≥
B (X), bnd(X) = R≥

B (X) − R≥
B (X) are called the

positive region, negative region, and boundary region of X ,
respectively.

2.2 Decision-theoretic rough set based on ordered
information systems

In the classical rough set, the positive region is based on the
algebraic inclusion relationship, so it can not reflect the toler-
ance of the concept. To overcome this problem, we knew the
probabilistic rough set. And then combining the probabilistic
rough sets and decision making, we had decision-theoretic
rough setsmodel proposed byYao andWong (1992). That is a
way tomake decisions underminimumBayesian expectation
risk. Based on the idea of three-way decisions, decision-
theoretic rough sets use a state set � and an action set
A to describe the decision making process. For any sub-
set X of U , we have two states given � = {X , XC } and
three actions A = {aP, aN, aB}, which, respectively, repre-
sent the three actions about deciding x ∈ pos(X), deciding
x ∈ neg(X), deciding x ∈ bnd(X). The loss function regard-
ing the risk or cost of actions in different states is given by
λPP, λBP, λNP, λPN, λBN, λNN, where λPP, λBP, λNP represent
the losses taking three actions, respectively, when an object
belongs to X , and λPN, λBN, λNN indicate the losses when
an object is not in X . Given the loss function with equiva-
lence relation R, the expected loss associated with taking the
individual actions for the objects in [x]R can be expressed
as:

R(aP|[x]R) = λPPP(X |[x]R) + λPNP(XC |[x]R)

R(aB|[x]R) = λBPP(X |[x]R) + λBNP(XC |[x]R)

R(aN|[x]R) = λNPP(X |[x]R) + λNNP(XC |[x]R)

where P(X |[x]R) = |X ∩ [x]R |/|[x]R | represents condition
probability of x with respect to X and P(XC |[x]R) = 1 −
P(X |[x]R), | • | denotes the cardinality of a set.

By means of Bayesian decision procedure, when it sat-
isfies conditions λPP ≤ λBP < λNP, λNN ≤ λBN < λPN,
minimum-risk decision rules are followed as:

(P) If P(X |[x]R) ≥ α and P(X |[x]R) ≥ γ , decide x ∈
pos(X);

(B) If P(X |[x]R) ≤ α and P(X |[x]R) ≥ β, decide x ∈
bnd(X);

(N ) If P(X |[x]R) ≥ β and P(X |[x]R) ≤ γ , decide x ∈
neg(X).
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where parameters α, β and γ are defined as:

α = λPN − λBN

(λPN − λBN) + (λBP − λPP)

β = λBN − λNN

(λBN − λNN) + (λNP − λBP)

γ = λPN − λNN

(λPN − λNN) + (λNP − λPP)

When a loss function with λPP ≤ λBP < λNP, λNN ≤ λBN <

λPN also satisfies the condition:

(λNP − λBP)(λPN − λBN) ≥ (λBP − λPP)(λBN − λNN)

then 0 ≤ β < γ < α ≤ 1. And the DTRS has the following
decision rules:

(P) If P(X |[x]R) ≥ α, decide x ∈ pos(X)

(B) If β < P(X |[x]R) < α, decide x ∈ bnd(X)

(N ) If P(X |[x]R) ≤ β, decide x ∈ neg(X)

Meanwhile, we can get the upper and lower approximations
of X based on the DTRS model:

apr(α,β)(X) = {x ∈ U |P(X |[x]R) > β}
apr(α,β)(X) = {x ∈ U |P(X |[x]R) ≥ α}

If apr
(α,β)

(X) = apr(α,β)(X), then X is a definable set, oth-

erwise X is rough. If α = 1, β = 0, then apr(α,β)(X) =
apr(X), apr

(α,β)
(X) = apr(X). Therefore, the DTRS model

is a generalization of Pawlak’s model.
Finally, pos(α,β)(X) = apr

(α,β)
(X), neg(α,β)(X) =∼

apr(α,β)(X), bnd(α,β)(X) = apr(α,β)(X) − apr
(α,β)

(X) are,

respectively, the positive region, negative region and bound-
ary region of X .

In Pawlak’s rough set theory, the lower and upper approx-
imation operators can partition the universeU into three dis-
joint sets, namely positive region, negative region and bound-
ary region. Using the conditional probability P(X |[x]R), the
Bayesian decision procedure can choose how to assign x
into these three regions. But in the ordered information sys-
tem I≥ = (U , AT , F), preordered relations are not same
with equivalence relations, which cannot be constructed the
probability measure space. To solve this problem, we use
an operator to handle the dominance classes and construct a
probability measure space.

Definition 2.2 (Xu et al. 2010) Let I≥ = (U , AT , F) be an
ordered information system, A ⊆ AT . R≥

A is a dominance
relation in I≥. The basic set assignment function h is defined
as

h(X) = {x ∈ U |[x]≥RA
= X}, X ∈ 2U

Apparently, x ∈ h(X) ⇔ [x]≥RA
= X .

Meanwhile, h([x]≥RA
) satisfies the following properties:

1.
⋃

X⊆U

h(X) = U ;

2. If X 	= Y , then h(X)
⋂

h(Y ) = ∅.

Obviously, the function h([x]≥RA
) is the universe partition

into equivalence classes. Thus, in the ordered information
system, this way can induce probability measure approxima-
tion space.

Definition 2.3 (Li and Xu 2015) Let I≥ = (U , AT , F) be
an ordered information system, A ⊆ AT , R≥

A is a dominance
relation in I≥. And 0 ≤ β ≤ α ≤ 1. For every X ⊆ U , the
lower and upper approximation based on parameters α, β

with respect to relation R≥
A are defined as follows.

hpr(α,β)

R≥
A

(X) = {x ∈ U |P(X |h([x]≥RA
)) ≥ α}.

hpr
(α,β)

R≥
A

(X) = {x ∈ U |P(X |h([x]≥RA
)) > β}.

If hpr(α,β)

R≥
A

(X) = hpr
(α,β)

R≥
A

(X), then X is a definable set, oth-

erwise X is a rough set.
Therefore, the probabilistic positive, negative and bound-

ary regions are

POS(X) = hpr(α,β)

R≥
A

(X) = {x ∈ U |P(X |h([x]≥RA
)) ≥ α}

NEG(X) = U−hpr
(α,β)

R≥
A

(X)={x ∈ U |P(X |h([x]≥RA
))≤β}

BND(X) = hpr
(α,β)

R≥
A

(X) − hpr(α,β)

R≥
A

(X)

= {x ∈ U | β < P(X |h([x]≥RA
)) < α}

2.3 Multigranulation rough set in ordered
information systems

Definition 2.4 Let I≥ = (U , AT , F) is an ordered informa-
tion system, Ri (i = 1, 2, . . . ,m) is a dominance relation in
U , and X ⊆ U . The optimistic lower and upper approxima-
tions of the set X with respect to Ri are defined, respectively,

OM∑m
i=1 R

≥
i
(X) =

{
x ∈ U |

m∨

i=1

([x]≥Ri ⊆ X)

}

OM∑m
i=1 R

≥
i
(X) =

{
x ∈ U |

m∧

i=1

([x]≥Ri ∩ X 	= ∅)

}

where “
∨
”, “

∧
” represented, respectively, “and”, “or”. And

[x]≥Ri = {y|(x, y) ∈ R≥
i }, R≥

i is a dominance relation with

respect to the attribute set R≥
i .
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If OM∑m
i=1 R

≥
i
(X) 	= OM∑m

i=1 R
≥
i
(X), then we call that

X is the optimistic multigranulation rough set with respect
to dominance relations.

Definition 2.5 Let I≥ = (U , AT , F) is an ordered informa-
tion system, Ri (i = 1, 2, . . . ,m) is a dominance relation in
U , and X ⊆ U . The pessimistic lower and upper approxima-
tions of the set X with respect to Ri are

PM∑m
i=1 R

≥
i
(X) =

{
x ∈ U |

m∧

i=1

([x]≥Ri ⊆ X)

}

PM∑m
i=1 R

≥
i
(X) =

{
x ∈ U |

m∨

i=1

([x]≥Ri ∩ X 	= ∅)

}

If PM∑m
i=1 R

≥
i
(X) 	= PM∑m

i=1 R
≥
i
(X), then we call that X

is the pessimistic multigranulation rough set with respect to
dominance relations.

In ordered information systems, combining multigranu-
lation with decision-theoretic rough set model is to become
multigranulation decision-theoretic rough set model based
on dominance relation, which is referred to as global multi-
granulation decision-theoretic rough set (G-DTRS). In the
following, we introduce global optimistic multigranulation
decision-theoretic rough set and global pessimistic multi-
granulation decision-theoretic rough set.

Definition 2.6 (Li and Xu 2015) Let I≥ = (U , AT , F) is
an ordered information system, R1, R2, . . . , Rm ⊆ AT are
dominance relations in U and m granularity structures. For
any X ⊆ U , the global optimisticmultigranulation lower and
upper approximations of the set X with respect to Ri are

m∑

i=1

R≥
i

O

(G−DTRS)

(X) = {x ∈ U |
m∨

i=1

(P(X |h([x]≥Ri )) ≥ α}

m∑

i=1

R≥
i

O

(G−DTRS)

(X) = U − {x ∈ U |
m∧

i=1

(P(X |h([x]≥Ri )) ≤ β}

Definition 2.7 (Li and Xu 2015) Let I≥ = (U , AT , F) is
an ordered information system, R1, R2, . . . , Rm ⊆ AT are
dominance relations in U and m granularity structures. For
any X ⊆ U , the global pessimistic multigranulation lower
and upper approximations of the set X with respect to Ri are

m∑

i=1

R≥
i

P

(G−DTRS)

(X) = {x ∈ U |
m∧

i=1

(P(X |h([x]≥Ri )) ≥ α}

m∑

i=1

R≥
i

P

(G−DTRS)

(X) = {x ∈ U |
m∨

i=1

(P(X |h([x]≥Ri )) > β}

By the lower approximation
∑m

i=1 R
≥
i
O

(G−DTRS)
(X),

∑m
i=1 R

≥
i
P

(G−DTRS)
(X) and theupper

∑m
i=1 R

≥
i

O

(G−DTRS)
(X),

∑m
i=1 R

≥
i

P

(G−DTRS)
(X), the optimistic multigranulation pos-

itive, negative and boundary regions are defined by

posO(X) =
m∑

i=1

R≥
i

O

(G−DTRS)

(X)

negO(X) = U −
m∑

i=1

R≥
i

O

(G−DTRS)

(X)

bndO(X) =
m∑

i=1

R≥
i

O

(G−DTRS)

(X) −
m∑

i=1

R≥
i

O

(G−DTRS)

(X)

Similarly, the pessimistic multigranulation positive, negative
and boundary regions are defined by

posP (X) =
m∑

i=1

R≥
i

P

(G−DTRS)

(X)

negP (X) = U −
m∑

i=1

R≥
i

P

(G−DTRS)

(X)

bndP (X) =
m∑

i=1

R≥
i

P

(G−DTRS)

(X) −
m∑

i=1

R≥
i

P

(G−DT RS)

(X)

3 Local multigranulation decision-theoretic
rough set in ordered information systems

3.1 Local multigranulation decision-theoretic rough
set based on dominance relations

In real life, obtaining the required information X ∈ U in
huge data need handle a number of multifarious screening.
A target concept X is often described by upper and lower
approximations. The global rough set requires the relation-
ship between each information granule and the target set X ,
and the amount of computation is large and time-consuming.
The local rough set does not consider the information gran-
ules { [x] | [x] ∩ X = ∅} that are independent of the target
set X , and only filters the information particles related to the
target set. Therefore, it is very useful for rough data analysis
based on large-scale dataset.

Definition 3.1 Let I≥ = (U , AT , F) be an ordered infor-
mation system and D be an inclusion degree defined on
P(U ) × P(U ). For any X ⊆ U , the local α-lower and β-
upper approximations are defined as

123



13252 J. Zhang et al.

R≥
(L,α)(X) = { x | D(X/[x]≥R) ≥ α, x ∈ X}

R≥
(L,β)(X) = ∪ { [x]≥R | D(X/[x]≥R) > β, x ∈ X}

where 0 ≤ β < α ≤ 1, and

D(X/[x]≥R) = |X ∩ [x]≥R |
|[x]≥R |

The pair is 〈R≥
(L,α)(X), R≥

(L,β)(X)〉 called local rough set

based on ordered information system.
In particular, if α = 1 and β = 0, then local rough set is

transformed into a classic rough set based on preordered rela-
tion. So, we can take classic rough set based on preordered
relation as a type of global rough set in ordered informa-
tion systems. Compared with the global rough set in ordered
information system, the computation of the upper / lower
approximation of the local rough set is based only on the
information granules determined by the objects in the tar-
get concept, rather than all of objects in a given universe.
Therefore, it can greatly reduce the time consumption in
the process of calculation approximation. So, R≥

(L,α)(X) and

R≥
(L,β)(X) are, respectively, called the local lower approxi-

mation and local upper approximation of X based on ordered
information.

Remark The local upper approximation in the above is not
defined according to the set of points that satisfy the previous
conditions, but is defined by the union of all the dominance
classes [x]≥R satisfying the conditions.We know that the local
lower and upper approximation elements are taken from the
target set x ∈ X . If it is defined in the previous way, the
lower and upper approximations are included in the target
set X , but the lower and upper approximations of rough sets
are used to characterize target sets through approximating.
Therefore, the lower approximation is contained in the target
set, while the upper approximation should cover the target
set. Thus, based on an ordered information we take advan-
tage of the union the dominance classes to define local upper
approximation in order to approaching the target set as much
as possible. Then, the following simple example to illustrate.

Example 3.1 An ordered information system I≥ = {U , AT ,

F} is shown in Table 1. Suppose that α = 0.8, β = 0.45,
X = {x1, x2, x4, x5}, and AT = {a1, a2, a3, a4}.

According to the definition of local approximation, we
first calculate dominance classes of elements of the target
set X .

[x]≥1 = {x1, x3, x6},
[x]≥2 = {x1, x2, x3, x5, x6},

Table 1 An ordered
information system

U a1 a2 a3 a4

x1 1 2 1 3

x2 1 1 1 3

x3 1 2 2 3

x4 2 1 3 1

x5 3 1 2 3

x6 3 3 2 3

[x]≥4 = {x4},
[x]≥5 = {x5, x6}.

Then,we adopt theway that the local upper approximation

is defined by traditional point set, which means R≥
(L,β)(X) =

{x | D(X/[x]≥R) > β, x ∈ X}. Therefore, we have

D(X/[x1]≥R) = 1

3
,

D(X/[x2]≥R) = 3

5
,

D(X/[x4]≥R) = 1,

D(X/[x5]≥R) = 1

2
.

Finally, the local upper approximation R≥
(L,β)(X) =

{x2, x4, x5} does not cover the target set X . Thus, the def-
inition way of point set is not suitable for the local upper
approximation in this paper.

Based on the probabilistic rough set model and DTRS
model in ordered information systems, the local DTRS lower
and upper approximation under the dominance relation is
defined by combining the basic set assignment function
h(X).

Definition 3.2 Let I≥ = (U , AT , F) be an ordered infor-
mation system, A ⊆ AT , R≥

A is a dominance relation in I≥.
And 0 ≤ β ≤ α ≤ 1. For every X ⊆ U , the local lower and
upper approximation with respect to preordered relation R≥

A
are defined as followed

hpr(L−DTRS)

R≥
A

(X) = {x ∈ X |P(X |h([x]≥RA
)) ≥ α}

hpr
(L−DTRS)

R≥
A

(X) = ∪{[x]≥RA
|P(X |h([x]≥RA

)) > β, x ∈ X}

If hpr(L,α,β)

R≥
A

(X) 	= hpr
(L,α,β)

R≥
A

(X), X is called a local rough

set based on ordered information systems.
Therefore, the local positive region, local negative region

and local boundary region based on preordered relation R≥
A

are
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POS(X) = hpr(L−DTRS)

R≥
A

(X)={x ∈ X |P(X |h([x]≥RA
))≥α}

NEG(X) = U − hpr
(L−DTRS)

R≥
A

(X)

= {x ∈ U |P(X |h([x]≥RA
)) ≤ β}

BND(X) = hpr
(L−DTRS)

R≥
A

(X) − hpr(L−DTRS)

R≥
A

(X)

Multigranulation decision-theoretic rough set based on pre-
ordered relation is constructed based on a family of prob-
ability measure. In an ordered information system, the
dominance relation can induce the cover rather than the par-
tition of the universe. The dominant class does not produce
a probability measure, and the equivalence class is actually
doing this. So, we can use the basic set assignment function
h(X) proposed in the second section to construct the proba-
bility measure space.

Let R≥
i (i = 1, 2, . . . ,m) be m coverings of universeU

in an ordered information system. For X ⊆ U , the lower
and upper approximations in a multigranulation rough set
approach to ordered information system can be represented
as two fusion functions, respectively,

m∑

i=1

R≥
i = fl(R

≥
1 , R≥

2 , . . . , R≥
m )

m∑

i=1

R≥
i = fu(R

≥
1 , R≥

2 , . . . , R≥
m )

where fl , fu are, respectively, called a lower fusion function
and a upper fusion function.

According to theBayesian decision produce, letλk(ai |ω j )

denote the loss or the cost and it is represented taking action
ai when the state ω j by the dominance relation R≥

k . Let
P(ω j |xk) be the conditional probability of an object xk being
in state ω j , which the object xk is based on the dominance
relation R≥

k . Use the conditional probability P(ω j |xk) and
the basic set assignment function h(X), the expected loss
associated with taking action ai is given by

R(ai |x1, x2, . . . , xm) =
m∑

i=1

s∑

j=1

λk(ai |ω j )P(ω j |xk)

Definition 3.3 Let I≥ = (U , AT , F) be an ordered informa-
tion system, R≥

i (i = 1, 2, . . . ,m) is a dominance relation in
I≥. The basic set assignment function h induced by R≥

i is
defined as

h(X) = {x ∈ U |[x]≥Ri = X}, X ∈ 2U

It is easy to know that x ∈ h(X) ⇔ [x]≥Ri = X . Meanwhile,

h([x]≥Ri ) can form a classification of universe U and trans-

form the nonprobability measure into probability measure
space.

In the following, the lower and upper approximation of
local optimistic (pessimistic) multigranulation set is intro-
duced, and the decision rules are given under different
circumstances.

Definition 3.4 Let I≥ = (U , AT , F) be an ordered informa-
tion system, R≥

i (i = 1, 2, . . . ,m) is a dominance relation
in I≥. [x]≥Ri is a dominance class induced by R≥

i . For
any X ⊆ U , parameters α, β satisfied numerical relation
0 ≤ β < α ≤ 1. The local optimistic multigranulation lower
and upper approximations based on a dominance relation R≥

i
are denoted by

m∑

i=1

R≥
i

O

(L−DTRS)

(X) =
{
x |

m∨

i=1

(P(X |h([x]≥Ri )) ≥ α, x ∈ X

}

m∑

i=1

R≥
i

O

(L−DTRS)

(X) =
m⋃

i=1

{
[x]≥Ri |

m∧

i=1

(P(X |h([x]≥Ri )) > β, x ∈ X

}

where P(X |h([x]≥Ri )) is the conditional probabilistic of the
equivalence class j([x]R≥

i
) with respect to X .

Then, we have local optimistic multigranulation positive,
negative and boundary region of X in the following.

posO(X) =
m∑

i=1

R≥
i

O

(L−DTRS)

(X)

negO(X) = U −
m∑

i=1

R≥
i

O

(L−DTRS)

(X)

bndO(X) =
m∑

i=1

R≥
i

O

(L−DTRS)

(X) −
m∑

i=1

R≥
i

O

(L−DTRS)

(X)

Definition 3.5 Let I≥ = (U , AT , F) be an ordered informa-
tion system, R≥

i (i = 1, 2, . . . ,m) is a dominance relation
in I≥. [x]≥Ri is a dominance class induced by R≥

i . For
any X ⊆ U , parameters α, β satisfied numerical relation
0 ≤ β < α ≤ 1. The local pessimistic multigranulation
lower and upper approximations based on a dominance rela-
tion R≥

i are denoted by

m∑

i=1

R≥
i

P

(L−DTRS)

(X) =
{
x ∈ X |

m∧

i=1

(P(X |h([x]≥Ri )) ≥ α

}

m∑

i=1

R≥
i

P

(L−DTRS)

(X) =
m⋃

i=1

hpr
(L−DTRS)

Ri
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where P(X |h([x]≥Ri )) is the conditional probabilistic of the
equivalence class j([x]R≥

i
) with respect to X .

Similarly, based on the local pessimistic multigranulation
lower and upper approximations, the local pessimistic multi-
granulation positive, negative and boundary regions of X are
defined by

posP (X) =
m∑

i=1

R≥
i

P

(L−DTRS)

(X)

negP (X) = U −
m∑

i=1

R≥
i

P

(L−DTRS)

(X)

bndP (X) =
m∑

i=1

R≥
i

P

(L−DTRS)

(X) −
m∑

i=1

R≥
i

P

(L−DTRS)

(X)

Example 3.2 An ordered information system about the influ-
enza is shown in Table 2, where the universe U =
{x1, x2, . . . , x10} consists of 10 patients who have 6 clin-
ical features: hyperpyrexia, cough, rhinorrhoea, myody-
nia, diarrhea, nausea. Therefore we set these six fea-
tures as six criteria, which are represented by AT =
{a1, a2, . . . , a6}. The degree of clinical characteristics is
represented as None, Slight, Middling, Serious. Suppose
X = {x2, x4, x5, x7, x8, x10} be the set of patients who get
suspected the bird flu. And assumes that α = 0.75, β = 0.5.

We setm = 2 and granularity structures (dominance rela-
tions) are R≥

1 , R
≥
2 , where R

≥
1 is a dominance relation formed

by three attributes: Hyperpyrexia, Cough, Rhinorrhoea and
R≥
2 are made up of three attributes: Myodynia, Diarrhea,

Nausea. Later, we need to know which people really get the
bird flu, who are possible patients and then exclude unrelated
patients. Hence, according to the given Table 1, the local
lower and upper multigranulation decision-theoretic rough
sets are calculated based on dominance relations R≥

1 , R
≥
2 ,

and three decisions are obtained.
For the local multigranulation decision-theoretic rough

sets based on dominance relations, we only need to obtain
dominance classes for these objects from X .

After a computation, we have

[x1]≥R1
= [x6]≥R1

= [x7]≥R1
= {x1, x2, x3, x5, x6, x7, x9},

[x2]≥R1
= [x5]≥R1

= {x2, x5},
[x3]≥R1

= [x9]≥R1
= {x3, x9},

[x4]≥R1
= [x8]≥R1

= [x10]≥R1
= {x4, x8, x10}.

[x1]≥R2
= [x9]≥R2

= {x1, x4, x5, x8x9},
[x2]≥R2

= [x7]≥R2
= [x10]≥R2

= {x2, x7, x10},

[x3]≥R2
= [x6]≥R2

= {x3, x6},
[x4]≥R2

= [x5]≥R2
= [x8]≥R2

= {x4, x5, x8}.

One knows [x]≥Ri (i = 1, 2) that is formed by coverings ofU
rather than partitions. According to the basic set assignment
function h([x]≥Ri ) (i = 1, 2), we can get the equivalence
classes of these objects from X .

h([x2]≥R1
) = h([x5]≥R1

) = {x2, x5},
h([x4]≥R1

) = h([x8]≥R1
) = {x4, x8, x10},

h([x7]≥R1
) = {x1, x6, x7}, h([x9]≥R2

) = {x3, x9}.
h([x2]≥R2

) = h([x7]≥R2
) = {x2, x7, x10},

h([x4]≥R2
) = h([x5]≥R2

) = h([x8]≥R2
) = {x4, x5, x8},

h([x9]≥R2
) = {x1, x9}.

Then the conditional probabilities are shown as following

P(X |h([x2]≥R1
)) = P(X |h([x5]≥R1

)) = 1,

P(X |h([x4]≥R1
)) = P(X |h([x8]≥R1

)) = 2

3
,

P(X |h([x7]≥R1
)) = 1

3
N ,

P(X |h([x9]≥R1
)) = 1

2
.

P(X |h([x2]≥R2
)) = P(X |h([x7]≥R2

)) = 2

3
,

P(X |h([x4]≥R2
)) = P(X |h([x5]≥R2

))= P(X |h([x8]≥R2
))=1,

P(X |h([x9]≥R2
)) = 1

2

Thus

2∑

i=1

R≥
i

O

(L−DTRS)

(X) = {x2, x4, x5, x8},

2∑

i=1

R≥
i

O

(L−DTRS)

(X) = [x2]≥R1
∪ [x4]≥R1

∪[x5]≥R1
∪ [x8]≥R1

∪ [x2]≥R2
∪ [x4]≥R2

∪ [x5]≥R2
∪ [x8]≥R2

= {x2, x4, x5, x7, x8, x10}
2∑

i=1

R≥
i

P

(L−DTRS)

(X) = {x5}

2∑

i=1

R≥
i

P

(L−DTRS)

(X) = [x2]≥R1
∪ [x4]≥R1

∪[x5]≥R1
∪ [x8]≥R1

∪ [x2]≥R2
∪ [x4]≥R2
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Table 2 An ordered
information system

U a1 a2 a3 a4 a5 a6

x1 None Slight None Slight Slight Middling

x2 Middling Serious Slight Middling Middling Slight

x3 Slight Slight Middling Middling None Serious

x4 Serious None Serious Slight Serious Middling

x5 Middling Serious Slight Slight Serious Middling

x6 None Slight None Middling None Serious

x7 None Slight None Middling Middling Slight

x8 Serious None Serious Slight Serious Middling

x9 Slight Slight Middling Slight Slight Middling

x10 Serious None Serious Middling Middling Slight

∪[x5]≥R2
∪ [x7]≥R2

∪ [x8]≥R2

= {x2, x4, x5, x7, x8, x10}

Therefore, we can get three decision regions with respect
to optimistic and pessimistic cases, respectively:

(PO)posO(X) = {x2, x4, x5, x8}
(NO)negO(X) = {x1, x3, x6, x9}
(BO)bndO(X) = {x7, x10}
(PP )posP (X) = {x5}
(N P )negP (X) = {x1, x3, x6, x9}
(BP )bndP (X) = {x2, x4, x7, x8, x10}

Next, we will explain and analyze the results in two cases:

(1) In accordance with three decision regions of local opti-
mistic multigranulation decision-theoretic rough set in
an ordered information system, patients x2, x4, x5, x8
that belong to positive region do suffer from the bird flu.
Then they need to be isolated and start a comprehen-
sive treatment. Patients x7, x10 who belong to boundary
region may be infected with the bird flu and need further
observation. Patients x1, x3, x6, x9 that have only com-
mon cold and do not infect the bird flu, and no further
observation was needed.

(2) In accordance with three decision regions of local pes-
simistic multigranulation decision-theoretic rough set in
an ordered information system, patients x5 that belong
to positive region do suffer from the bird flu. Then
they need to be isolated and start a comprehensive
treatment. Patients x2, x4, x7, x8, x10 who belong to
boundary region may be infected with the bird flu and
need further observation. Patients x1, x3, x6, x9 that have
only common cold and do not infect the bird flu, and no
further observation was needed.

In the global multigranulation decision-theoretic rough
set, we need to calculate the equivalence classes of all the
objects from U. By a computation, we have

[x1]≥R1
= [x6]≥R1

= [x7]≥R1
= {x1, x2, x3, x5, x6, x7, x9},

[x2]≥R1
= [x5]≥R1

= {x2, x5},
[x3]≥R1

= [x9]≥R1
= {x2, x3, x5, x9},

[x4]≥R1
= [x8]≥R1

= [x10]≥R1
= {x4, x8, x10}.

[x1]≥R2
= [x9]≥R2

= {x1, x4, x5, x8x9},
[x2]≥R2

= [x7]≥R2
= [x10]≥R2

= {x2, x7, x10},
[x3]≥R2

= [x6]≥R2
= {x3, x6},

[x4]≥R2
= [x5]≥R2

= [x8]≥R2
= {x4, x5, x8}.

Then

h([x1]≥R1
) = h([x6]≥R1

) = h([x7]≥R1
) = {x1, x6, x7},

h([x2]≥R1
) = h([x5]≥R1

) = {x2, x5},
h([x3]≥R1

) = h([x9]≥R2
) = {x3, x9},

h([x4]≥R1
) = h([x8]≥R1

) = h([x10]≥R1
) = {x4, x8, x10}.

h([x1]≥R2
) = h([x9]≥R2

) = {x1, x9},
h([x2]≥R2

) = h([x7]≥R2
) = h([x10]≥R2

) = {x2, x7, x10},
h([x3]≥R2

) = h([x6]≥R2
) = {x3, x6},

h([x4]≥R2
) = h([x5]≥R2

) = h([x8]≥R2
) = {x4, x5, x8}.

And

P(X |h([x1]≥R1
)) = P(X |h([x6]≥R1

)) = P(X |h([x7]≥R1
)) = 1

3
,

P(X |h([x2]≥R1
)) = P(X |h([x5]≥R1

)) = 1,

P(X |h([x3]≥R1
)) = P(X |h([x9]≥R1

)) = 1

2
,

P(X |h([x4]≥R1
)) = P(X |h([x8]≥R1

)) = P(X |h([x10]≥R1
)) = 2

3
.
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P(X |h([x1]≥R2
)) = P(X |h([x9]≥R2

)) = 1

2
,

P(X |h([x2]≥R2
)) = P(X |h([x7]≥R2

)) = P(X |h([x10]≥R2
)) = 2

3
,

P(X |h([x3]≥R2
)) = P(X |h([x6]≥R2

)) = 0,

P(X |h([x4]≥R2
)) = P(X |h([x5]≥R2

)) = P(X |h([x8]≥R2
)) = 1.

Thus

2∑

i=1

R≥
i

O

(G−DTRS)

(X) = {x2, x4, x5, x8},

2∑

i=1

R≥
i

O

(G−DTRS)

(X) = {x2, x4, x5, x7, x8, x10}

2∑

i=1

R≥
i

P

(G−DTRS)

(X) = {x5}

2∑

i=1

R≥
i

P

(G−DTRS)

(X) = {x2, x4, x5, x7, x8, x10}

In order to obtain the lower and upper approximations
of X for the local multigranulation decision-theoretic rough
sets, we just need calculate 12 the basic sets h(Xi ) and 12
probability values. However, the corresponding twenty con-
tents need to be computed for the global multigranulation
decision-theoretic rough sets. So, we can reduce the com-
putational time with respect to the number of dominance
classes. Thus, it is a motivation for our paper.

3.2 The algorithm for computing approximations of
MGDTRS in an ordered information system

In the following, the approximate algorithm of the global
optimisticmultigranulation rough set and the local optimistic
multigranulation approximation algorithmwill be given. The
pessimistic approximation algorithm is similar and can be
obtained by analogy, and it is not explained in detail here.

The givenAlgorithm1 is a global algorithm for computing
the optimistic lower and upper approximations in an ordered
information system. First, we set initial values, in which GU
represents the global optimistic upper approximation and
GL represents the global optimistic lower approximation.
In the second step, we calculate the dominance classes of
all objects at each granulation, in order to prepare for the
construction of approximation space. In the third step, the
dominance class is converted into an equivalence class by
the basic set assignment function h(X), and all the objects
are classified at each granulation by dominance classes of
the previous step. Finally, according to the global multigran-
ulation approximation model, the conditional probabilities

Algorithm 1: The global lower and upper approxima-
tions of MGDTRS in an ordered information system.
Input : Given R1, R2, . . . , Rn ⊆ AT n dominance relations

on U , α, β, and a target set X ⊆ U
Output : The global lower and upper approximation of a target

set X .
1 begin
2 1: set GU ← ∅, GL ← ∅;
3 2:for i = 1 : n do
4 for j = 1 : |U | do
5 compute [x j ]≥Ri ; /* the dominance classes

of x j with respect to Ri */
6 end
7 end
8 3:for i = 1 : n do
9 for j = 1 : |U | do

10 compute h([x j ]≥Ri ); /* all of the
equivalence classes of h[x j ] based on
Ri */

11 end
12 end
13 4:for i = 1 : n do
14 for j = 1 : |U | do
15 compute P(X |h([x j ]≥Ri )); /* the global

optimistic lower and upper
approximations */

16 if P(X |h([x j ]≥Ri )) ≥ α then
17 GL ← GL ∪ {x j };
18 end
19 if P(X |h([x j ]≥Ri )) > β then
20 GU ← GU ∪ {x j };
21 end
22 end
23 end

return : GU ,GL;
24 end

of all objects are calculated, and the objects satisfying the
conditions are put into the lower and upper approximations.

The given Algorithm 2 is a local algorithm for computing
the optimistic lower and upper approximations in an ordered
information system. First, we set initial values, in which LU
represents the local optimistic upper approximation and LL
represents the local optimistic lower approximation. Next, as
in the second step of the global model, the dominance classes
for all objects at each granulation are calculated. Then, at
each granulation, only the h([xi ]) of elements in the target
set needs to be calculated. Finally, according to the local
multigranulation approximation model, only the conditional
probability of objects in the target set is calculated, and the
objects satisfying the conditions are put into the lower and
upper approximations.

Since the first step of the local algorithm and the global
algorithm is to assign an initial value, its time complexity can
be ignored. In the second step, the local algorithm, like the
global algorithm, needs to compute all the dominance classes
[x j ]R≥

i
at each granularity Ri (i = 1, 2, . . . , n). Therefore,
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Algorithm 2:The local lower and upper approximations
of MGDTRS in an ordered information system.
Input : Given R1, R2, . . . , Rn ⊆ AT n dominance relations

on U , α, β, and a target set X ⊆ U
Output : The local lower and upper approximation of a target

set X .
1 begin
2 1: set LU ← ∅, LL ← ∅;
3 2:for i = 1 : n do
4 for j = 1 : |U | do
5 if x j ∈ X then
6 compute [x j ]≥Ri ; /* the dominance

classes of x j with respect to Ri
*/

7 end
8 end
9 end

10 3:for i = 1 : n do
11 for j = 1 : |U | do
12 if x j ∈ X then
13 compute h([x j ]≥Ri ); /* the equivalence

classes of h[x j ] based on Ri */
14 end
15 end
16 end
17 4:for i = 1 : n do
18 for j = 1 : |U | do
19 if x j ∈ X then
20 compute P(X |h([x j ]≥Ri )); /* the local

optimistic lower and upper
approximations */

21 if P(X |h([x j ]≥Ri )) ≥ α then
22 LL ← LL ∪ {x j };
23 end
24 if P(X |h([x j ]≥Ri )) > β then
25 LU ← LU ∪ {[x j ]R≥

i
};

26 end
27 end
28 end
29 end

return : LU , LL;
30 end

the time complexity of the second step on n binary relations
is O(n × |U |2). In the third step, the local algorithm only
needs to calculate h([x j ]≥Ri ) of the elements in the target set
X , so the complexity of the third step in the local algorithm is
O(n × |X ||U |). However, since the global algorithm needs
to calculate h([x j ]≥Ri ) of all objects on U , the complexity

of the third step in the global algorithm is O(n × |U |2).
Due to |x | � |U |, the complexity of the local algorithm is
much smaller than the complexity of the global algorithm
(O(n × |X ||U |) � O(n × |U |2)). Last step, the complex-
ity of computing lower and upper approximations in local
algorithm is O(n × |X |). Nevertheless, the global algorithm
requires each object to be compared, so the complexity of the
global algorithm in the fourth step is O(n × |U |). Similarly,

O(n × |X |) � O(n × |U |) in the last step. In conclusion,
the time complexity of local algorithm is much less than that
of global algorithm after constructing probabilistic approxi-
mation space.

4 Experimental analysis

In this section, in order to further illustrate the advantages
of the local algorithm in an ordered information system,
we carry out a series of experiments to compare time con-
sumption between global algorithm and local algorithm
for getting lower and upper approximations by using the
three datasets where from the UC Irvine Machine Learning
Database Repository (http://archive.ics.uci.edu/ml/datasets.
html). Detailed information is shown in Table 3. These exper-
iments are implemented by using MATLAB R2014b and
performedonapersonal computerwith an IntelCore i7-6500,
2.50 GHz CPU, 4.0 GB of memory, and 64-bit Windows 10.

In the experiment, let the original data in each set are
divided into ten categories, and fix a target set for each
dataset. The first ten percent of each dataset is regarded as
the first category of each set, that is first universe, the first
20%of the objects of each dataset is treated as the second uni-
verse, and so on. Finally, we get ten universes of each dataset.
The horizontal coordinate pertains to ten universes for every
set, while the vertical coordinate concerns the computational
time. For both global and local algorithms, the first step is to
calculate dominance classes of all objects under each relation
of granularity, the starting point of the time consumption is as
after the first step is finished in order to reflect the difference
about algorithms. Therefore, all the charts and data below
are recorded and analyzed after the dominance classes have
been obtained. In this way, the change of time consumption
is compared after making the global into the local. For the
completeness of the experiment, we take a pair of parame-
ters (α = 0.75, β = 0.5), and the optimistic and pessimistic
approximation are compared under local and global algo-
rithms, respectively. Meanwhile, we preprocessed the data
and selected two granular structures in this experiment.

As shown below, Table 4 shows the time results of the six
datasets about optimistic approximations when α equals 0.75
and β equals 0.5. All the experimental results of optimistic
approximations obtained using the six datasets are shown in
Fig. 1. As shown in Fig. 1, the growth trend of the curve of
the local algorithm is relatively slow. The time consumption
of the global algorithm obviously increases with the increase
in the data. By comparison, we can get a much smaller time
loss than the global algorithm in the local algorithm.

According to Table 5, the time results about computing
pessimistic approximations is shown that local algorithm
consumes much less time than the execution time consumed
by global algorithm when α equals 0.75 and β equals 0.5.
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Table 3 The basic information
of datasets

No. Dataset name Abbreviation Objects Attributes

1 Statlog (Image Segmentation) S(IS) 2310 19

2 Wine Quali t y − white WQ-w 4898 12

3 EMG Physical Action EPA 10,000 8

4 EEG EyeState EES 14,980 15

5 HT RU2 HTRU2 17,898 9

6 Letter Recognition LR 20,000 16

Table 4 A comparison of optimistic approximations computational time between Algorithms 1 and 2 (unit is second)

Percentage (%) S(IS) WQ-w EPA EES HTRU2 LR

Global Local Global Local Global Local Global Local Global Local Global Local

10 0.313 0.046 1.529 0.727 5.932 4.350 6.795 2.181 18.105 6.719 6.102 2.732

20 0.855 0.067 2.920 0.881 16.961 6.275 23.683 3.829 53.497 7.611 15.181 2.732

30 1.622 1.045 6.320 1.271 32.810 7.683 49.734 5.532 105.125 9.852 29.051 7.628

40 2.560 1.405 9.945 1.319 55.183 8.713 93.185 7.292 181.085 12.254 42.396 11.247

50 3.732 1.839 14.452 1.520 77.271 10.349 161.030 8.943 261.616 14.158 53.359 13.216

60 5.167 2.089 21.039 1.757 103.683 11.706 213.737 10.917 381.081 16.798 67.474 15.666

70 6.654 2.349 26.736 1.894 141.056 13.384 261.076 12.819 478.790 19.126 81.576 21.555

80 8.345 2.729 34.335 2.125 274.658 16.617 341.038 17.709 604.041 21.226 127.178 23.018

90 10.405 2.833 42.946 2.405 312.085 18.415 441.504 19.734 755.343 26.769 149.302 25.642

100 12.344 3.218 51.182 2.549 417.689 19.528 555.485 21.452 949.194 28.921 240.971 26.871

Fig. 1 The computation time comparison of optimistic approximations between local algorithm and global algorithm (α=0.75, β=0.5)
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Table 5 A comparison of pessimistic approximations computational time between Algorithms 1 and 2 (unit is second)

Percentage (%) S(IS) WQ-w EPA EES HTRU2 LR

Global Local Global Local Global Local Global Local Global Local Global Local

10 0.321 0.042 1.514 0.727 5.981 4.350 6.795 2.197 18.121 6.719 6.086 2.732

20 0.848 0.061 2.920 0.881 16.946 6.275 23.667 3.829 53.559 7.626 15.118 5.191

30 1.613 0.912 6.332 1.271 32.795 7.668 49.781 5.532 105.172 9.852 29.113 7.628

40 2.498 1.392 9.954 1.319 55.229 8.698 93.169 7.292 181.148 12.254 42.443 11.247

50 3.712 1.804 14.436 1.520 77.239 10.349 161.045 8.747 261.694 14.174 53.389 13.216

60 5.093 2.054 21.070 1.757 103.714 11.751 213.831 10.917 381.222 16.798 67.563 15.666

70 6.598 2.294 26.751 1.894 141.072 13.399 261.139 12.846 478.868 19.127 81.744 21.555

80 8.335 2.712 34.467 2.125 274.642 16.633 340.753 17.726 604.135 21.227 127.241 23.003

90 10.308 2.7930 430.169 2.405 311.944 18.415 441.942 19.734 755.531 26.801 149.390 25.627

100 12.304 3.201 51.303 2.549 417.674 19.544 555.469 21.450 950.147 28.936 241.096 26.871

Fig. 2 The computation time comparison of pessimistic approximations between local algorithm and global algorithm (α=0.75, β=0.5)

Similarly, all the experimental results of pessimistic approx-
imations obtained using the six data sets are shown in Fig. 2.
From the graph, the local algorithm in all datasets is better
than the global algorithm, and the time loss is far less than the
corresponding global algorithm. As the scale of the dataset
increased, the difference between the time-consuming of the
global and the local algorithms is increasing. Therefore, it
can be concluded that the local algorithm is better than the
global algorithm.

5 Conclusions

In ordered information systems, decision-theoretic rough set
divides the information into three decision regions by the
minimum Bayesian decision method, which provides a theo-
retical basis for information screening and classification. But
when the scale of dataset is large, it takes a lot of time to char-
acterize the target set andmake analysis decisions. Therefore,
this paper constructs a local rough set in the ordered infor-
mation system to reduce time loss. First of all, based on
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inclusion degree, a local rough set under the dominance
relation is defined. Furthermore, combinedwith the decision-
theoretic rough set (DTRS), the probability approximation
space is constructed and the local DTRS model is provided.
In addition, optimistic and pessimistic local multigranula-
tion decision-theoretic rough set models are, respectively,
presented in the viewpoint of granular computing. At the
same time, the local algorithm and the global algorithm are
given for comparison experiments. The experimental results
show that after constructing the approximation space, the
local algorithm greatly reduces the time loss compared with
the global algorithm and fully proves the advantages of the
local model.
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